
Outsourced XML Database: Query Assurance
Optimization

Andrew Clarke and Eric Pardede
Department of Computer Science and Computer Engineering

La Trobe University, Bundoora, VIC 3083, Australia
Email: {pa2clarke@students.; E.Pardede@}latrobe.edu.au

Abstract—The area of XML database outsourcing, whereby
the data owner enlists an external service provider to manage
the storage and retrieval of their database, has been of increasing
interest in recent years due to the relatively inexpensive nature
of hardware/bandwidth, compared to the higher expense of in-
house expert staff/software. As such it has become increasingly
practical to use outsourced database solutions. However, as
the service provider may not be fully trusted, XML database
outsourcing introduces several security concerns that are new or
more complex than those encountered in traditional database
implementations. These include: data confidentiality, privacy,
secure auditing, query assurance and secure and efficient storage.
Of particular importance due to its relevance to most outsourced
database models is query assurance – ensuring the database
responds correctly to queries. In this paper, we propose the use
of temporary time stamps and hash granularity to increase the
efficiency of query assurance. This approach is tested against
real datasets of varying type and size. Further, we consider how
best to create time stamps and the issues associated with expiring
versus distributed time stamp models.

I. INTRODUCTION

The area of XML database outsourcing, whereby the data
owner enlists an external service provider to manage the
storage and retrieval of their database, has been of increasing
interest in recent years due to the relatively inexpensive nature
of hardware/bandwidth, compared to the higher expense of
in-house expert staff/software. As such it has become increas-
ingly practical to use outsourced database solutions.

However, as the outsourcing service may not be fully trusted
(as shown in Figure 1), ensuring that data is not modified
(correctness); the query is performed over all data (complete-
ness); and represents the most up to date version (freshness)
are significant concerns. These three issues are collectively
known as query assurance and will be the primary topic of
this paper. Further, query assurance needs to be approached
in a way that does not create further issues – such as poor
efficiency. Ideally the increases in overheads should be small
enough to be transparent to end users, while still providing the
benefit of offloading most of the work from the data-owners.

Various models for query assurance over outsourced XML
have been proposed. However, most authentication approaches
have a data-centric focus [1], [2], which is closely aligned
to traditional database applications where data is strongly
structured and search by value is of primary importance.
Less attention has been given to document-centric models,
where the structure and order of the XML is more meaningful

Fig. 1. Outsourced Database Model

than searching. Further, most approaches have not actively
considered freshness. Generally it is assumed that time stamps
will be distributed from the data owner/s to the clients by some
method then matched against the database service provider.
For a highly dynamic database, the overheads associated with
this approach would be quite onerous. A different approach
using expiring time stamps has been suggested briefly [3].
Storing time stamps and making decisions regarding expiry
rates has not been fully investigated.

Of concern to all approaches is efficiency. This has to be
considered in a balanced way as quite often approaches that
have high efficiency for the server, do so at the cost to the
client/data owner [4], and the reverse is true. Performance
measures in relation to efficiency are typically quantified by
computational resources/time and data overheads.

The challenge of work in this area is to put forth a strong
query assurance mechanism, that is efficient both in terms
of data overheads and processing cost. These issues are of
growing concern in recent times due to the shift to mobile
devices, with associated CPU and bandwidth limitations.

Overall we make three contributions in this paper. Firstly,
we propose a multi-verification tree approach that appropri-
ately handles the queries of document and data centric XML.
Secondly, the use of variable time stamps and hash granularity
is considered for use in improving efficiency. Thirdly, a test
implementation of real datasets is used to measure CPU and
data overhead. We find that CPU overhead is not significant.
However, our results show data overhead on average to be
52%, which can be reduced by our optimization approaches
to 25%.

The rest of the paper is organized as follows. Section II
reviews related work. Section III discusses the methodology
used in our approach. Section IV presents our experiment setup

2010 24th IEEE International Conference on Advanced Information Networking and Applications

1550-445X/10 $26.00 © 2010 IEEE

DOI 10.1109/AINA.2010.130

1181

and results. Section V presents our conclusion and details the
possible future work in this area.

II. RELATED WORK

Most approaches to query assurance can be categorized into
two groups:

1) Probabilistic – Where the clients have some knowledge
of the database, and combine queries over the known
and unknown portions to provide reasonable certainty
that the query results are correct.

2) Authenticated – Generally based on the concept of
merkle hash trees [5], [4], [6]. The data owner uses hash-
ing to create message digests of the database and time
stamps, then uses public-key cryptography to validate
query results. These hashes/signatures/time stamps are
stored in a verification structure as per the scheme.

Much of the previous work on query assurance for outsourced
database has been concerned with relational databases. How-
ever, there has been some recent work that directly addresses
the unique properties of tree based databases, particularly
XML.

A. Probabilistic Query Assurance

Probabilistic query assurance [7], [3], [8], [9] is based on the
premise that if we know or can infer the contents of a portion
of the outsourced database, we can with a high probability
confirm that the content is correct, complete and fresh. This
is done by performing a batch of queries over both the known
and unknown sections of the database. If the known content
is returned correctly, the unknown is also considered correct.
This approach relies on being able to periodically insert/delete
extra elements that are used for checks, and that are not
detectable by the service provider. As a further issue, if even
one client cooperates with a malicious service provider this
approach can be invalidated [3] – as the service provider would
then know what data it needs to return correctly and what it
could modify.

The advantage of probabilistic verification is that it is
possible to vary the overheads by relaxing or tightening
required assurance levels [3] – and hence the amount of extra
data needed in the database. As well, there is the ability to
implement this approach without making modifications to the
outsourcing server.

One approach that was used to mitigate the potential for
the service provider being able to detect the fake data, was to
use dual encryption [9]. Dual encryption uses two symmetrical
encryption keys. The entire database is encrypted into blocks
using the first key and outsourced to the service provider.
Then a subset of the database is encrypted with the second
key and outsourced to the service provider. As the service
provider cannot detect the difference between the two types
of encrypted blocks, it is not possible for the service provider
to detect the verification data. As with other query assurance
schemes, if the encryption key is passed onto the server, the
security is lost. However, for most purposes the fake data
is undetectable. The only weakness is that encrypted XML

significantly restricts the type of queries the database can
perform [10], [11].

B. Authenticated Query Assurance

1) Condensed-RSA and Aggregate Signatures: This was an
early approach proposed for use in relational databases. This
extension of RSA [4] is made possible due to its homomorphic
nature. It is possible to combine a series of digital signatures
by performing a product into one standard length RSA sig-
nature and preform one evaluation. This is an extremely time
saving method especially in outsourced database operations
where many signatures are retrieved. Condensed-RSA for
relational databases was an early attempt to assure correct-
ness of outsourced relational databases in a more efficient
manner than was possible based on standard RSA/DSA. The
efficiency increases are quite noticeable and Condensed-RSA
had become the standard in later work. Condensed-RSA was
later extended to cover completeness [6] through a method
called signature chaining, whereby each signed record contains
data relating to records on either side. This allowed range
queries to be executed and correctness assured by returning the
condensed/aggregated signature including the signature for the
tuples directly outside the range on either side. BGLS (Boneh,
Gentry, Lynn and Shacham) [12] is a competing aggregate
signature scheme for correctness in outsourced relational
database. BGLS (that is based on elliptic curves and bilinear
mappings) allows the creation of a single signature even with
multiple different signers. Although the BGLS scheme has
better functionality and is more efficient for signing data than
Condensed-RSA, the cost to verify data is very expensive [4].
This makes BGLS a good solution for a database with multiple
signers where write/read operation are more balanced, rather
than a model where a few data owners write to the database
and many users query.

2) Embedded Merkle Hash Trees: Embedded Merkle Hash
Trees[13] were created in an effort to produce a trade off
between the initial construction costs of signature aggregate
and chaining models and large verification objects of Merkle
Hash Trees [4]. The trade off is accomplished by containing a
Merkle B+ tree within each Embedded Merkle B+ tree node.
The result is a considerably more collapsed tree, allowing
for more compact verification objects, at the cost of higher
setup/maintenance costs. The major strength of Embedded
Merkle over other solutions is flexibility, as it is demonstrated
that with minor modifications the trade off between setup cost
and verification object size can be altered.

3) Partially Materialized Digest Scheme: Partially Materi-
alized Digest Scheme is a recent approach that extends from
the ideas apparent in Embedded Merkle b+ tree approach [13].
The Partially Materialized Digest Scheme [2] is based on the
concept that hashing is less expensive than page file reads.
So the verification tree is only partially constructed at any
time and as queries are processed the necessary hash values
are calculated. Similar to other approaches, the verification
information is stored separately from the outsourced data, with
the result that it is relevant to all database types. Further, it

1182

is proposed that the user should be able to decide whether
assurance is required, and when it isn’t this approach is
nearly as efficient as a regular database implementation. In
comparison to the other verification object implementations,
the Partially Materialized Digest Scheme performs well in
both static and dynamic situations. Freshness isn’t addressed
directly by this approach but it is mentioned that it is compat-
ible with distributed or expiring time stamp schemes.

4) Nested Merkle B+ Tree: An approach suggested that
takes into account XML structure, Nested Merkle B+ trees [1]
take a novel approach to query assurance of XML data. A
path tree is constructed where the leaves of that tree are value
and parent trees. Value trees sort the XML elements at that
path by a key, and parent trees sort the parent information.
In this way it is possible for the B+ tree to store most of
the structural information of the XML database as well as the
contents of elements. A noticeable issue is that if many search
values are required the hash of an XML element is duplicated
in many value trees, requiring more effort to complete update
operations. Further, it does not store element order unless an
extra value tree is added for that purpose.

C. Summary of previous approaches

The related work has brought forth some strong models that
work well for the situations they are intended for. Probabilis-
tic approaches can provide a reasonable level of assurance.
However, they are very vulnerable to being defeated if the
server has the same information as any user that accesses the
database. Authenticated approaches on the other hand, have
not fully addressed freshness. Further, even those approaches
that directly address XML do not appear well suited for
document-centric XML, where element order is meaningful
and needs to be correctly queried, or situations where value
based search is not particularly meaningful.

Further, all approaches have associated overheads. There is
the potential to provide efficiency/optimization improvements
to increase the viability of query assured outsourced XML.

Our approach extends from the earlier authenticated ap-
proaches by attempting to address efficiency in a new manner.
That is, extra digital signatures and variable granularity are
added to reduce the size of verification objects. Further,
the verification tree structure is designed to cater better to
both data and document centric XML with attempts to avoid
expensive update operations.

III. METHODOLOGY

To address the issues involved with outsourced XML we
propose an authenticated approach that varies significantly
from previous work and addresses both data and document
centric XML and further, attempts to increase efficiency
through expiring time stamps. A multiple tree approach is
used as shown in Figure 2, whereby the hashes of the XML
elements are sorted by exact path (path including order in
document) and stored in the leaf nodes. The leaf nodes are
hashed back to the root and then digitally signed. To ensure
completeness for search queries, index trees will be created

and sorted based on that value and signed in the same manner
as the path tree. However, the index trees do not contain the
hash of the element they reference. Instead they store the exact
path of the element. This is to decrease the amount of update
overheads required.

Further, database information will be stored in the tree in the
form of read and modification counts, to allow for efficiency
modification and time stamp duration calculation.

The implementation will be client driven – that is the client
requests verification data based on the query that it wants to
process. This has the benefit of allowing the verification server
to be stored with a different service provider. As the XML
service provider does not have easy access to the verification
information, cheating becomes more difficult. Further, it is
then possible for a client to not request verification data to
conserve bandwidth and it would be difficult for the XML
service provider to detect. Finally, the disadvantages are that
two server connections will need to be made, and the client
will need to perform a query translation to match the XML
query to the verification server.

A. Accessing

For each XML query the value is searched among the
verification trees. Once found, boundary values to the left
and right of the selection are included and the verification
object is created by including the branches’ values up
the tree until the root or other signed node is found as
shown in Figure 3. If the query was based on a search
index, the index would first be queried and then the path tree
queried based on the exact path retrieved from the index query.

Client driven XML accessing algorithm:
1: query XML database
2: query Verification server
3: receive XML result
4: receive verification object
5: lowerHash = hash(XML result)
6: while signature not reached do
7: if lowerHash exists in verification object then
8: hash (lowerHash)
9: end if

10: end while
11: verify signature with highest level hash
12: if verification passes then
13: XML is valid
14: else
15: XML is invalid
16: end if

Once the data is returned it is hashed with the absolute path
of the element. This is then checked against the returned value
from the path tree. If the hash matches the stored value, the
query is considered verified.

B. Updates/Refreshing

On an update operation, two updates are produced. One for
the XML value/s that need updating and a second for the hash

1183

Fig. 2. Verification Tree

Fig. 3. Verification Tree Accessing

value that was previously stored. On a hash update, parent
hashes are re-calculated until a signed node is reached and
resigned plus time stamp refreshed.

For time stamping, rather than a hand-off procedure
whereby whoever makes a modification is responsible for
freshness until the next modification [3], a master data
owner who keeps the outsourced database fresh seems
practical. Other data owners can make updates but do not
take responsibility for freshness.

Refresh of verification tree time stamps algorithm:
1: Server maintains list of time stamped nodes
2: Server sends time stamp nodes to Data Owner
3: Data owner verifies signatures + time stamp authenticity
4: Data owner resigns the nodes and returns to Server

C. Maintenance

Of importance to this approach is the use of maintenance
to adjust the verification trees to improve efficiency. These
measures attempt to optimize the verification objects so that
the most common queries are the most efficient based on the
read rates.

The operations possible to increase efficiency are:

1) Increase or decrease hash granularity to more closely
match the size of the queried elements.

Fig. 4. Maintenance optimization of verification tree

2) Increase or decrease the duration of time stamps based
on the modification rate.

3) Placing or removing additional time stamps in proximity
to high access leaf nodes.

4) Adjust the depth and breadth of the tree by increasing
or decreasing the maximum child nodes per branch.

The adjustment of time stamp placement is displayed in
Figure 4. As shown, the high access nodes have digitally
signed nodes added to a common ancestor. The outcome of
this is that the size of the verification object (the amount of
data that needs to be returned) is significantly reduced.

Maintenance algorithm:
1: for i = 0 to indexNo do
2: leaf = firstLeaf

1184

3: for j = 0 to leafCount do
4: if leaf.readCount > threshold then
5: temp = leaf
6: while nextLeaf.readCount > threshold do
7: leaf = nextLeaf
8: end while
9: end if

10: if temp ! = null then
11: find common ancestor(temp,leaf)
12: apply time stamp + signature to ancestor
13: temp = null
14: end if
15: end for
16: end for
17: for j = 0 to pathTreeNo do
18: check readRecords
19: if readRecords > granThreshold then
20: re-hash XML document to finer granularity
21: end if
22: set time stamp duration based on modificationRate
23: end for

Through the use of the above algorithm temporary variable
time stamps will be placed close to the most frequently
accessed nodes in both the index and path trees. Further, there
is the ability to increase the granularity of the document based
on read statistics if required.

IV. RESULTS

A. Test Setup

The test setup was conducted on a x3 AMD 710 with 3GB
RAM. The client and both server implementations were run on
the one machine. To accurately measure XML DB overheads
in comparison to verification services a full featured native
XML database was utilized. In this case a Xindice [14] data
collection running on a tomcat6 server was used. Client and
verification servers were developed in Java with 1.6.0 runtime
library. The verification tree objects were a custom class built
on top of the DefaultMutableTreeNode java library. The tree
objects loosely follow B+ tree structure – whereby the tree is
self balancing and all records are stored in leaf nodes. The
data setup comprises three major types:

1) A collection of ten RSS documents is used to demon-
strate smaller document-centric XML files. They are
outsourced with only path based verification as sorting
is not useful in this context.

2) The CIA World Fact Book [15] is used to demonstrate
a mid sized data-centric XML file. Path and index trees
are created for this dataset.

3) Mondial [16] geographical database is used to simulate
a large XML database. Path verification only is imple-
mented.

The different types of XML files are used to demonstrate
the algorithms’ effectiveness in small to large files, as well as
data-centric and document-centric XML. A range of different
query types are attempted. Path, exact match and range search

are conducted to measure the varying performances of the
tree structures to each type. The sample set that is used on
the XML/verification servers consists of a limited number of
queries performed hundreds of times for a total of 10000
queries performed on each XML file type. The sample queries
are performed once, directly following initialization being
completed, then performed again on the post maintenance DB
to measure the effectiveness of optimization.

As there are three databases in use, and each database is
queried both pre and post maintenance, the total number of
queries performed is approximately 60000.

The measurements recorded consist of data overhead and
CPU computational time. For CPU overhead, database initial-
ization, queries and maintenance will be investigated. For data
overhead, the pre and post maintenance query performance
will be used.

B. Initialization

As shown in Figure 5, our results demonstrate that on
increasing the hash granularity, the XML setup time remains
constant, while the verification tree setup time increases
substantially. This is due to the RSA calculation that is
performed on each addition. This could be somewhat mitigated
by batching additions to the verification object together then
performing a single digital signature.

Fig. 5. Initialization Time

As a further exploration, we tested how the size of the
buckets (or number of children) each branch contained affected
setup time. It was found, as shown in Figure 6, that by
increasing the bucket size, the setup time would decrease.
These returns flattened off after a certain point was reached.
These improvements were caused by the reduced number of
split operations that needed to be performed on the verification
tree.

C. Computation Time

Interestingly, as it is shown in Figure 8, the CPU time re-
quired to query the verification server was minimal compared
to that involved with querying the XML server. This suggests
that server CPU overheads are not a primary concern for query

1185

Fig. 6. Granularity effect of setup performance

assurance over outsourced XML. Further, it gives support to
the client driven approach as the client can then retrieve the
verification object, have it processed and ready to compare to
the XML data well before the XML query is returned, rather
than waiting for both.

As a further indication of CPU time, the maintenance
operation was performed in 0.5% of the test runtime. Though
this suggests that maintenance is too expensive to run in real
time, its overall effect on server resources is not significant if
run on a schedule.

D. Query Results

In this section we analyze the pre maintenance and post
maintenance query results.

The pre maintenance results are interesting – verification
data over the entire query set was a 52% overhead. This
is quite significant. In the case of the CIA World Factbook
results shown in Figure 9, the verification data was larger than
the XML data returned. This is an undesirable outcome. As
would be expected, the amount of verification data overheads
increased as the size of database and hence the size of the
verification trees increased.

Fig. 7. Pre versus post verification object size

The post maintenance query showed strong improvements
with overall verification overheads reduced by 52% as shown
in Figure 7. The XML data retrieved remained the same.

Further, the results varied based on the size of the database.
The smallest data set was the RSS files which reduced their
verification data overheads by 30%; the medium CIA file
reduced by 47%; and the large Mondial file data overhead was
reduced by 63%. These are significant optimizations and the
improvements scale well from both small to large databases.
Further, as this optimization was more effective for large
database files than for smaller, it reduces the increase from the
best to worse case. For our data this consists of the RSS versus
Mondial database, with the difference in overheads being a
decrease from 314% to 166% – a significant improvement.

Finally, though verification CPU overheads were not a
significant consideration in query processing. The verification
object computational time had a marginal improvement of 12%

E. Discussion
Though significant efficiency improvements were shown

in the results through this optimization technique, there are
various areas of strengths and weaknesses.

This approach used a more dynamic optimization technique
than what is usually implemented to improve tree efficiency.
The advantage of this is that it will attempt to optimize
on short term trends. However, more long term optimization
improvement can be gained through nesting/embedding [1],
[13] to improve the entire structure of the tree rather than
improving small portions on a temporary basis.

Further, this approach relies on the assumption that to some
extent client access habits will be pattern based. If client access
habits were purely random the efficiency of this approach
would decrease.

As this approach uses an exact path basis to sort the path
tree, it takes on some of the attributes of an array. The
advantage of this is that there are less updates required on
the index trees as they only require an update if the path or
their search value changes. This has a further advantage of
allowing more relaxed time stamp duration on the index tree
as modifications will be less frequent. However, the downside
is that delete/insert operations will be more expensive, as
proceeding elements will need to be updated with their new
path as will all indexes.

A non trivial problem of using server statistics of
read/modification rates to decide how to optimize the database
is that the read rates cannot be ensured. The potential exists for
the service provider to change these statistics in a manner that
would make the service inefficient. Though query assurance
would still be ensured the cost would be steeper. The most
logical way to approach this weakness is through secure
auditing [10], which is another area of outsourced XML
database research. However, it would be possible to mitigate
the risk of service provider misbehaviour in this way by client
data collection opt-in and comparing that data against the
service providers statistics.

V. CONCLUSION AND FUTURE WORK

This work explored the area of query assurance in out-
sourced XML databases. Procedures to more efficiently pro-
vide that assurance and the best approach to ensure freshness

1186

Fig. 8. Computational Time

Fig. 9. Pre versus Post Maintenance Comparison

for both data and document centric XML databases were
investigated. In particular an exact path approach to storing
verification data and an indexing scheme for verification
with increased efficiency through the use of temporary time
stamps and variable levels of hash granularity were considered.
Further, time stamp creation and the issues involved with
read/modification counts were explored.

A test implementation was developed to measure the effi-
ciency of this type of verification. The tests were run alongside
a native XML DB (Xindice) to more accurately assess over-
heads. These were conducted over large query test sets (60000
queries) and performed over a range of different sample files,
ranging from small RSS feeds to large XML data files.

Interestingly, it was shown that verification overheads in
terms of time/CPU resources were not significant compared
to that of XML queries. The results showed that the most
significant area of verification overheads was data and that
the overheads could be significantly reduced by the use of
temporary time stamps to optimize the verification objects.
Reductions of as much as 63% occurred in large files.

In the future an interesting study would be using the meth-

ods in this work in an adaptive and self maintaining/balancing
way that applies the most efficient range of optimizations
based on the database type and usage.

An extension of this is investigating the effect that this
verification approach has on other more complex FLWOR
(FOR LET WHILE ORDER RETURN) XQuery expressions.
Previous work has focused on path and range searches, rather
than on the effect of join type queries.

A related area of future work would involve applying
this approach as part of an embedded/nested tree approach.
In this approach verification trees are adaptive based on
their size/usage and restructure in both temporary ways (time
stamps) and more long term ways (nesting/embedding).

Finally, there is the challenging future work of implement-
ing query assurance as part of a larger approach to outsourced
database security. This involves the consideration of the other
areas of outsourced database security – data confidentiality,
privacy, secure auditing and secure and efficient storage.

REFERENCES

[1] V. H. Nguyen and T. K. Dang, “A novel solution to query assurance
verification for dynamic outsourced xml databases,” Journal of Software,

1187

vol. 3, no. 4, pp. 9–16, 2008.
[2] K. Mouratidis, D. Sacharidis, and H. Pang, “Partially materialized digest

scheme: an efficient verification method for outsourced databases,” Very
Large Data Base, vol. 18, no. 1, pp. 363–381, 2009.

[3] M. Xiey, H. Wang, J. Yin, and X. Meng, “Providing freshness guarantees
for outsourced databases,” in Proceedings of the 11th international
conference on Extending database technology: Advances in database
technology, vol. 261, 2008, pp. 323–332.

[4] G. T. Einar Mykletun, Maithili Narasimha, “Authentication and integrity
in outsourced databases,” ACM Transactions on Storage (TOS), vol. 2,
no. 2, pp. 107–138, 2006.

[5] P. T. Devanbu, M. Gertz, C. U. Martel, and S. G. Stubblebine, “Authentic
third-party data publication,” in Database Security, 2000, pp. 101–112.

[6] M. Narasimha and G. Tsudik, “Authentication of outsourced databases
using signature aggregation and chaining,” in Lecture Notes in Computer
Science 3882, 2006, pp. 420–436.

[7] R. Sion, “Query execution assurance for outsourced databases,” in
Proceedings of the 31st international conference on Very large data
bases, 2005, pp. 601–612.

[8] M. Xie, H. Wang, J. Yin, and X. Meng, “Integrity auditing of outsourced
data,” in Very Large Data Base, C. Koch, J. Gehrke, M. N. Garofalakis,
D. Srivastava, K. Aberer, A. Deshpande, D. Florescu, C. Y. Chan,
V. Ganti, C.-C. Kanne, W. Klas, and E. J. Neuhold, Eds. ACM, 2007,
pp. 782–793.

[9] H. Wang, J. Yin, C.-S. Perng, and P. S. Yu, “Dual encryption for
query integrity assurance,” in Conference on Information and Knowledge
Management, J. G. Shanahan, S. Amer-Yahia, I. Manolescu, Y. Zhang,

D. A. Evans, A. Kolcz, K.-S. Choi, and A. Chowdhury, Eds. ACM,
2008, pp. 863–872.

[10] T. K. Dang, Open and Novel Issues in XML Database Applications:
Future Directions and Advanced Technologies. Information Science
Reference, 2009, ch. XI: Security Issues in Outsourced XML Databases.

[11] ——, “Ensuring correctness, completeness, and freshness for outsourced
tree-indexed data,” Information Resources Management Journal, vol. 21,
no. 1, pp. 59–76, 2008.

[12] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, ser. Lecture Notes in Computer Science, E. Biham, Ed., vol.
2656. Springer, 2003, pp. 416–432.

[13] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, “Dynamic authen-
ticated index structures for outsourced databases,” in Special Interest
Group on Management Of Data Conference, S. Chaudhuri, V. Hristidis,
and N. Polyzotis, Eds. ACM, 2006, pp. 121–132.

[14] “Apache xindice,” http://xml.apache.org/xindice/. [Online]. Available:
http://xml.apache.org/xindice/

[15] “Sample dataset – cia factbook: Country data,”
http://www.dbis.informatik.uni-goettingen.de/lopix/lopix-mondial.html.
[Online]. Available: http://www.dbis.informatik.uni-
goettingen.de/Mondial/lopix/cia.xml

[16] “The mondial database,” http://www.dbis.informatik.uni-
goettingen.de/Mondial/. [Online]. Available:
http://www.dbis.informatik.uni-goettingen.de/Mondial/mondial.xml

1188

